High Current Power Inductor
- CSCI1056 Series

Outline:
产品概要
- Magnetic shielding structure, excellent resistance to electro magnetic interference.
 磁屏蔽结构，抗电磁干扰(EMI)性能强。
- Assemblage design, sturdy structure.
 组立式设计，结构坚固。
- Small volume, high current, low magnetic loss, low ESR, small parasitic capacitance.
 小体积，大电流，低磁损，低阻抗，寄生电容小。
- Temperature rise current and saturation current is less influenced by environment.
 温升电流及饱和电流受环境条件影响小。
- Operating temperature: -40℃ ～ +125℃ (Including coil’s temperature rise)
 工作温度：-40℃ ～ +125℃ (包含线圈发热)

1 Appearance and dimensions (mm)
外形尺寸

2 Marking
印字标识

3 Reference land pattern (mm)
参考基板尺寸

4 Schematic
原理图
High Current Power Inductor
CSCI1056 Series

5 Electrical characteristics

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Inductance (μH)</th>
<th>D.C.R. (mΩ)</th>
<th>Saturation current (A)</th>
<th>Temperature rise current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>±20% Typical</td>
<td>Max Typical</td>
<td>Typical</td>
<td>Typical</td>
</tr>
<tr>
<td>CSCI1056-1R3M</td>
<td>1.30</td>
<td>4.20</td>
<td>4.90</td>
<td>16.0</td>
</tr>
<tr>
<td>CSCI1056-1R5M</td>
<td>1.50</td>
<td>4.20</td>
<td>4.90</td>
<td>14.0</td>
</tr>
<tr>
<td>CSCI1056-2R2M</td>
<td>2.20</td>
<td>4.80</td>
<td>5.70</td>
<td>12.0</td>
</tr>
<tr>
<td>CSCI1056-4R0M</td>
<td>4.00</td>
<td>11.2</td>
<td>13.5</td>
<td>12.0</td>
</tr>
<tr>
<td>CSCI1056-5R6M</td>
<td>5.60</td>
<td>11.7</td>
<td>14.0</td>
<td>8.00</td>
</tr>
<tr>
<td>CSCI1056-6R8M</td>
<td>6.80</td>
<td>16.5</td>
<td>20.0</td>
<td>7.00</td>
</tr>
<tr>
<td>CSCI1056-8R8M</td>
<td>8.80</td>
<td>17.5</td>
<td>21.5</td>
<td>6.00</td>
</tr>
</tbody>
</table>

- **All data is tested based on 25°C ambient temperature.**
- **1** Inductance measured condition at 100kHz, 0.1V.
- **2** Saturation current: the actual value of DC current when the inductance decrease 20% of its initial value.
- **3** Temperature rise current: the actual value of DC current when the temperature rise is ΔT40°C(Ta=25°C).

Special reminder: Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Please verify the product temperature in the final application.

Special reminder: Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- **All data is tested based on 25°C ambient temperature.**
- **1** Inductance measured condition at 100kHz, 0.1V.
- **2** Saturation current: the actual value of DC current when the inductance decrease 20% of its initial value.
- **3** Temperature rise current: the actual value of DC current when the temperature rise is ΔT40°C(Ta=25°C).

Special reminder: Circuit design, component placement, PWB size and thickness, cooling system and etc.

Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.

Special reminder:

- Circuit design, component placement, PWB size and thickness, cooling system and etc. all will affect the product temperature. Please verify the product temperature in the final application.
6 Saturation current VS temperature rise current curve
饱和电流 VS 温升电流曲线

CSCI1056-1R3M
CSCI1056-1R5M
CSCI1056-2R2M
CSCI1056-4R0M
CSCI1056-5R6M
CSCI1056-6R8M
CSCI1056-8R8M
7 Packing specification

7.1 Carrier tape dimensions (mm)

<table>
<thead>
<tr>
<th>Dimension (mm)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outer diameter</td>
<td>1.5 ± 0.1</td>
</tr>
<tr>
<td>Width A</td>
<td>16.0 ± 0.1</td>
</tr>
<tr>
<td>Width B</td>
<td>2.0 ± 0.1</td>
</tr>
<tr>
<td>Height A</td>
<td>4.0 ± 0.1</td>
</tr>
<tr>
<td>Height B</td>
<td>1.75 ± 0.1</td>
</tr>
<tr>
<td>Length</td>
<td>11.5 ± 0.1</td>
</tr>
<tr>
<td>Length (10.75)</td>
<td></td>
</tr>
<tr>
<td>Length B</td>
<td>24.0 ± 0.3</td>
</tr>
<tr>
<td>Thickness</td>
<td>6.3 ± 0.1</td>
</tr>
<tr>
<td>Ref. Thickness</td>
<td>6.5 ± 0.1</td>
</tr>
<tr>
<td>Width A (Ref)</td>
<td></td>
</tr>
<tr>
<td>Width B (Ref)</td>
<td></td>
</tr>
<tr>
<td>Thickness (Ref)</td>
<td></td>
</tr>
</tbody>
</table>

※ Packing is referred to the international standard IEC 60286-3.
包装参照国际标准 IEC 60286-3。

7.2 Tape direction

7.3 Cover tape peel off condition

- Cover tape peel force shall be 0.1 to 1.3N.
盖带剥离力为 0.1 ～ 1.3N。
- Reference peel speed 300±10mm/min.
参考剥离速度 300±10mm/分钟。
High Current Power Inductor
- CSCI1056 Series

7.4 Reel dimensions (mm)
卷盘尺寸

7.5 Carton dimensions and packing quantity
包装箱尺寸和包装数量

<table>
<thead>
<tr>
<th>Product Series</th>
<th>Quantity / Reel</th>
<th>Inner Carton Quantity</th>
<th>Out Carton Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI1056</td>
<td>400pcs</td>
<td>(400×2) = 800pcs</td>
<td>(800×3) = 2400pcs</td>
</tr>
</tbody>
</table>

7.6 Label making
标签标识

The following items will be marked on the reel of product label and shipping label.
以下项目将明确标识于产品卷盘标签以及运输标签上。
8 Soldering specification
焊接规格

8.1 Reflow profile for SMT components
SMT 回流焊温度曲线

8.2 Classification of peak package body temperature (TP)
封装体峰值温度(TP)分类

<table>
<thead>
<tr>
<th>Package Thickness 封装厚度</th>
<th>Package Volume 封装体积</th>
<th><350 mm³</th>
<th>350〜2000 mm³</th>
<th>>2000 mm³</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-Free Assembly 无铅装配</td>
<td><1.6mm</td>
<td>260℃</td>
<td>260℃</td>
<td>260℃</td>
</tr>
<tr>
<td></td>
<td>1.6〜2.5mm</td>
<td>260℃</td>
<td>250℃</td>
<td>245℃</td>
</tr>
<tr>
<td></td>
<td>≥2.5mm</td>
<td>250℃</td>
<td>245℃</td>
<td>245℃</td>
</tr>
</tbody>
</table>

※ Reflow is referred to standard IPC/JEDEC J-STD-020D.
回流焊参照标准 IPC/JEDEC J-STD-020D。